MATH226 16

STUDENT WARNING: This course syllabus is from a previous semester archive and serves only as a preparatory reference. Please use this syllabus as a reference only until the professor opens the classroom and you have access to the updated course syllabus. Please do NOT purchase any books or start any work based on this syllabus; this syllabus may NOT be the one that your individual instructor uses for a course that has not yet started. If you need to verify course textbooks, please refer to the online course description through your student portal. This syllabus is proprietary material of APUS.

Course Summary

Course : MATH226 Title : Calculus II
Length of Course : 16
Prerequisites: MATH225 Credit Hours : 3

Description

Course Description: This is the second course of a three part Calculus sequence. It is designed to extend the concepts learned in Calculus I to the concepts and techniques of integral calculus. Topics include the basics of integration (anti-derivatives, substitution, and the Fundamental Theorem), applications of integration (motion, area), L'Hopital's Rule (indeterminate quotients, indeterminate forms), elementary function inverses (inverse functions, Calculus of inverses, trigonometry function inverses, Calculus of these inverses), techniques of integration (tables, powers of Sine and Cosine, other Trigonometric powers, by parts, trigonometric substitution, and numerical analysis), improper integrals, integral applications (average value, volumes by cross-sections, disk \& washers, shells, arc lengths, and work). (Prerequisite: MATH225)

Course Scope:

This course is presented on-line through a combination of the APUS and the THINKWELL websites. It uses a specially developed on-line text and workbook and is supplemented by video lectures covering each of the key mathematical skills needed to succeed in the course. Exercises are included there and are a required part of the course. The main objective of this second course is to introduce the concepts of integral calculus and the techniques for analyzing and solving problems using its techniques. The course is organized into several distinct parts. The first part of the course introduces the basic concept and methods of integration and leads to the fundamental theorem of calculus. The second part of the course gives some elementary applications of integration. This is followed by an analysis of indeterminate forms of a limit. Inverse functions and their derivative are then introduced. The next part of the course focuses on more advanced techniques of integration. A brief section on improper integrals is then introduced. Finally, several key applications of integral calculus are then explored. Practical applications are emphasized throughout the course.

Objectives

After completing the course, you will be able to:

1. Use anti-derivatives.
2. Use the Fundamental Theorem of Calculus to solve problems of motion and area.
3. Solve indeterminate limits using L'Hopital's rule.
4. Solve Calculus problems with exponential and logarithmic functions.
5. Evaluate inverse trig functions.
6. Integrate functions uses techniques for powers, partial fractions, by parts, and trigonometric substitution.
7. Use numerical integration to approximate integrals using the trapezoidal rule.
8. Solve improper integrals.
9. Apply integration to problems involving average value, volumes, arc lengths and work.

Outline

Week 1: The Basics of Integration

Learning Objective(s)

Course Objective 1

2.1 Anti-derivatives

Find the Anti-derivative of a function
Use integral notation;
Use the constant of integration;
Use the power rule for integration;
Use the constant multiple rule for integration;
Use the sum rule for integration
Use integration rules for trigonometric and exponential functions
2.2 Integration by Substitution

Identify integrals to solve though integration by substitution
Solve integrals through integration by substitution
2.3 Illustrating Integration by Substitution

Solve composite trigonometric integrals by substitution
Solve composite exponential and rational integrals by substitution
*1.1 The Power Rule
Uses of the Power Rule
*1.2 The Product \& Quotient Rules
The Product Rule
The Quotient Rule
*1.3 The Chain Rule
An Introduction to the Chain Rule
Using the Chain Rule
Combining Computational Techniques
Reading and Videos

Sections 2.1.1-2.1.3 with videos:
-Go to Thinkwell-

Anti-differentiation

Blue ink is a direct link to these sites

Anti-derivatives of Powers of x

Anti-derivatives of Trigonometric and Exponential Functions
Sections 2.2.1-2.2.2 with videos:
Undoing the Chain Rule
Integrating Polynomials by Substitution
Sections 2.3.1-2.3.2 with videos:
Integrating Composite Trigonometric Functions by Substitution
Integrating Composite Exponential and Rational Functions by Substitution
*Optional Review Chapter 4: Sections 1.1-1.3
93 minutes of video time this week
Assignments
Week 1 Forums (2) :
Introductory Forum \& Forum Week 1 Interpreting the Integration symbol
Watch assigned videos, read transcript, study notes and worked problems in Thinkwell.
*Optional Review
Chapter 1:
Section 1; Power Rule,
2; Product and Quotient Rules,
3; Chain Rule
Complete ALL exercises in Thinkwell.
Review Summary Week 1 Forum

Week 2: The Basics of Integration

Learning Objective(s)
Course Objectives 1, 2
2.3 Illustrating Integration by Substitution

Solve composite trigonometric integrals by substitution
Solve composite integrals by substitution
2.4 The Fundamental Theorem of Calculus

Explain the method for approximating the area under a curve

Describe a Riemann sum; Explain the solution of the definite integral as the area under a curve
Describe Part I of the Fundamental Theorem of Calculus
Apply Part II of the Fundamental Theorem of Calculus to evaluate definite integrals
Reading and Videos
Sections 2.3.3-2.3.4 with videos:
More Integrating Trigonometric Functions by Substitution
Choosing Effective Function Decompositions
Sections 2.4.1-2.4.4 with videos:

Approximating Areas of Plane Regions

Areas, Riemann Sums, and Definite Integrals
The Fundamental Theorem of Calculus, Part I
The Fundamental Theorem of Calculus, Part II
71 minutes of video time this week
Assignments
Forum Week 2
Derivative of an integral
Watch assigned videos, read transcript, study notes and worked problems in Thinkwell.
Complete ALL exercises in Thinkwell.
Review Summary Week 2 Forum

Week 3: The Basics of Integration and Applications of Integration

Learning Objective(s)
Course Objectives 1, 2
2.4 The Fundamental Theorem of Calculus

Apply Part II of the Fundamental Theorem of Calculus to evaluate definite integrals
Evaluate definite integrals
3.1 Motion

Apply integration to functions describing motion
Apply integration to functions involving gravitational acceleration
Apply integration to functions involving gravitational acceleration
3.2 Finding the Area between Two Curves

Find the area between two curves

Reading and Videos
Sections 2.4.5-2.4.6 with videos:
lllustrating the Fundamental Theorem of Calculus

Evaluating Definite Integrals

Sections 3.1.1-3.1.3 with videos:

Anti-derivatives and Motion

Gravity and Vertical Motion
Solving Vertical Motion Problems
Section 3.2.1 with video:
The Area between Two Curves
86 minutes of video time this week
Assignments
Forum Week 3
Head trauma application
Watch assigned videos, read transcript, study notes and worked problems in Thinkwell.
Complete ALL exercises in Thinkwell.
Review Summary Week 3 Forum
Submit Assignment 1 before Sunday 11:55 pm EST
Complete Test 1 on Chapter 2
Basics of Integration
both in Sakai and in Thinkwell before Sunday 11:55 pm EST

Week 4: Applications of Integration

Learning Objective(s)
Course Objectives 1, 2
3.2 Finding the Area between Two Curves

Find the area bounded by two curves
Find the area bounded by two curves that intersect within the area;
Find the area between the x-axis and a curve below it
Find the area bounded by several curves
3.3 Integrating with Respect to y

Determine whether to find an area by integration with respect to y

Find the area between two curves by integration with respect to y
Find the area between two curves involving trigonometric functions
Reading and Videos
Sections 3.2.2-3.2.4 with videos:
Limits of Integration and Area
Common Mistakes to Avoid When Finding Areas
Regions Bound by Several Curves
Sections 3.3.1-3.3.3 with videos:
Finding Areas by Integrating with Respect to y: Part One
Finding Areas by Integrating with Respect to y: Part Two
Area, Integration by Substitution, and Trigonometry
81 minutes of video time this week
Assignments
Forum Week 4
Hidden Restrictions
Watch assigned videos, read transcript, study notes and worked problems in Thinkwell.
Complete ALL exercises in Thinkwell.
Review Summary Week 4 Forum

Week 5: L'Hopital's Rule

Learning Objective(s)
Course Objective 3
14.1 Indeterminate Quotients

Evaluate limits with indeterminate forms
Understand when to apply L'Hôpital's rule
Understand when to apply L'Hôpital's rule
Apply L'Hôpital's rule to evaluate limits
14.2 Other Indeterminate Forms

Apply L'Hôpital's rule to evaluate limits with indeterminate products
Apply L'Hôpital's rule to evaluate limits with indeterminate differences
Reading and Videos
Sections 14.1.1-14.1.4 with videos:

Indeterminate Forms

An Introduction to L'Hôpital's Rule

An Introduction to L'Hôpital's Rule

More Exotic Examples of Indeterminate Forms

Sections 14.2.1-14.2.2 with videos:

L'Hôpital's Rule and Indeterminate Products

L'Hôpital's Rule and Indeterminate Differences

63 minutes of video time this week
Assignments
Forum Week 5
Negative area
Watch assigned videos, read transcript, study notes and worked problems in Thinkwell.
Complete ALL exercises in Thinkwell.
Review Summary Week 5 Forum

Week 6: L'Hopital's Rule

Learning Objective(s)
Course Objectives 3, 4, 5
14.2 Other Indeterminate Forms

Apply L'Hôpital's rule to evaluate limits of one to the infinite power
Apply L'Hôpital's rule to evaluate limits of one to the infinite power

15.1 Inverse Functions

Describe the exponential and natural log functions and their derivatives
Differentiate logarithmic functions and functions containing logs
Find derivatives using logarithmic differentiation
Define inverse functions; Identify inverse functions
Find the inverse of a function
*5.2 Exponential Functions
Evaluate exponential functions
Find derivatives of exponential functions
Uncover the hidden musical qualities of math
Uncover the hidden musical qualities of math
*5.3 Logarithmic Functions
Evaluate logarithmic functions
Find derivatives of logarithmic functions
Apply combinations of rules to find derivatives involving transcendental functions
Reading and Videos
Sections 14.2.3-14.2.4 with videos
L'Hôpital's Rule and One to the Infinite Power
Another Example of One to the Infinite Power
Sections 15.1.1-15.1.5 with videos:
The Exponential and Natural Log Functions
Differentiating Logarithmic Functions
Logarithmic Differentiation
The Basics of Inverse Functions
Finding the Inverse of a Function
*Optional sections \& videos 5.2.1-5.2.3, 5.3.1-5.3.3
Graphing Exponential Functions
Derivatives of Exponential Functions
The Music of Math
Evaluating Logarithmic Functions
The Derivative of the Natural Log Function
Using the Derivative Rules with Transcendental Functions
80 minutes of video time this week
Assignments
Forum Week 6
Table of Integrals located in Thinkwell
Watch assigned videos, read transcript, study notes and worked problems in Thinkwell.
Complete ALL exercises in Thinkwell.

* Optional Review 5.2-5.3:

Exponential \& Logarithmic Functions
Functions and Their Inverses
Review Summary Week 6 Forum
Submit Assignment 2 before Sunday 11:55 pm EST

Complete Test 2 on Chapter 10 Integration Applications \& Chapter 14 L'Hôpital's Rule both in Sakai and in Thinkwell before Sunday 11:55 pm EST

Week 7: Functions and Their Inverses

Learning Objective(s)
Course Objective 5
15.2 The Calculus of Inverse Functions

Evaluate the derivative of an inverse function at a point
15.3 Inverse Trigonometric Functions

Describe the inverse trigonometric functions
Evaluate inverse trigonometric functions
15.4 The Calculus of Inverse Trigonometric Functions

Find the derivative of inverse trigonometric functions
Apply derivatives of inverse trigonometric functions
*15.5 The Hyperbolic Functions
Describe the hyperbolic functions
Prove a hyperbolic identity
Find derivatives of hyperbolic functions; Find derivatives involving hyperbolic functions
Reading and Videos
Section 15.2.1 with video

Derivatives of Inverse Functions

Sections 15.3.1-15.3.3 with videos:
The Inverse Sine, Cosine, and Tangent Functions
The Inverse Secant, Cosecant, and Cotangent Functions
Evaluating Inverse Trigonometric Functions
Sections 15.4.1-15.4.2 with videos:
Derivatives of Inverse Trigonometric Functions
More Calculus of Inverse Trigonometric Functions
*Optional sections 5.5.1-5.5.3 with videos
Defining the Hyperbolic Functions
Hyperbolic Identities
Derivatives of Hyperbolic Functions

62 minutes of video time this week
Assignments
Forum Week 7
Historical Calculus
Watch assigned videos, read transcript, study notes and worked problems in Thinkwell.
Complete ALL exercises in Thinkwell.
*Optional sections 5.5
Hyperbolic Functions
Review Summary Week 7 Forum

Week 8: Techniques of Integration

Learning Objective(s)
Course Objectives 1, 6
16.1 Integration Using Tables

Use an integral table to solve integrals
Solve integrals using u-substitution
16.2 Integrals Involving Powers of Sine and Cosine

Solve integrals of powers of sine and cosine
Solve integrals of powers of sine and cosine
Solve integrals of powers of sine and cosine
16.3 Integrals Involving Powers of Other Trigonometric Functions

Solve integrals of other trigonometric functions
Reading and Videos
Sections 16.1.1-16.1.2 with videos:
An Introduction to the Integral Table
Making u-Substitutions
Sections 16.2.1-16.2.3 with videos:
An Introduction to Integrals with Powers of Sine and Cosine
Integrals with Powers of Sine and Cosine
Integrals with Even and Odd Powers of Sine and Cosine
Section 16.3.1 with video:
Integrals of Other Trigonometric Functions

60 minutes of video time this week
Assignments
Forum Week 8
Learning Calculus on-line
Watch assigned videos, read transcript, study notes and worked problems in Thinkwell.
Complete ALL exercises in Thinkwell.
Review Summary Week 8 Forum
Submit Assignment 3 before Sunday 11:55 pm EST
Complete Test 3 on Chapter 15 Functions and Inverses
both in Sakai and in Thinkwell before Sunday 11:55 pm EST
Week 9: Techniques of Integration

Learning Objective(s)
Course Objectives 1, 6
16.3 Integrals Involving Powers of Other Trigonometric Functions

Solve integrals of other trigonometric functions using the Pythagorean
Solve integrals of other trigonometric functions using the Pythagorean identity
16.4 An Introduction to Integration by Partial Fractions

Solve integrals of rational expressions by decomposition to partial fractions
Solve integrals of rational expressions by decomposition to partial fractions
Solve integrals of rational expressions using polynomial long division
*16.5 Integration by Partial Fractions with Repeated Factors
Solve integrals of rational expressions with repeated linear functions
Solve integrals of rational expressions with repeated linear function
Solve integrals of rational expressions with repeated linear function
Solve integrals of transcendental functions by transformation to a rational function
16.6 Integration by Parts

Explain the procedure for integration by part
Reading and Videos
Sections 16.3.2-16.3.3 with videos
Integrals with Odd Powers of Tangent and Any Power of Secant
Integrals with Even Powers of Secant and Any Power of Tangent

Sections 16.4.1-16.4.3 with videos

Finding Partial Fraction Decompositions

Partial Fractions

Long Division

*Optional sections 16.5.1-16.5.4 with videos

Repeated Linear Factors: Part One

Repeated Linear Factors: Part Two
Distinct and Repeated Quadratic Factors
Partial Fractions of Transcendental Functions
Section 16.6 .1 with video
An Introduction to Integration by Parts
65 minutes of video time this week
Assignments
Forum Week 9
Derivative without the Quotient Rule
Watch assigned videos, read transcript, study notes and worked problems in Thinkwell.
Complete ALL exercises in Thinkwell.
*Optional section 16.5
Partial Fractions with repeated factors
Review Summary Week 9 Forum

Week 10: Techniques of Integration

Learning Objective(s)
Course Objectives 1, 6
16.6 Integration by Parts

Solve integrals using integration by parts
Solve integrals using integration by parts
Solve integrals using repeated integration by parts
Solve integrals using integration by parts and algebraic manipulation
16.7 An Introduction to Trigonometric Substitution

Explain how to solve integrals with radical expressions using trigonometric substitution
Solve integrals with radical expressions using trigonometric substitution

Solve integrals with rational powers using trigonometric substitution
Reading and Videos
Sections 16.6.2-16.6.5 with videos

Applying Integration by Parts to the Natural Log Function

Inspirational Examples of Integration by Parts
Repeated Application of Integration by Parts
Algebraic Manipulation and Integration by Parts
Sections 16.7.1-16.7.3 with videos
Converting Radicals into Trigonometric Expressions
Using Trigonometric Substitution to Integrate Radicals
Trigonometric Substitutions on Rational Powers
72 minutes of video time this week
Assignments
Forum Week 10
Horizontal Trig tangent
Watch assigned videos, read transcript, study notes and worked problems in Thinkwell.
Complete ALL exercises in Thinkwell.
Review Summary Week 10 Forum

Week 11: Techniques of Integration

Learning Objective(s)
Course Objectives 1, 6, 7
16.8 Trigonometric Substitution Strategy

Find appropriate trigonometric substitutions to solve integrals
Solve definite integrals using trigonometric substitution
Solve definite integrals using trigonometric substitution
16.9 Numerical Integration

Derive the trapezoidal rule for approximating the area under a curve; Use the trapezoidal rule to estimate the area under a curve

Use the trapezoidal rule to estimate the area under a curve
Reading and Videos
Sections 16.8.1-16.8.3 with videos

An Overview of Trigonometric Substitution Strategy

Trigonometric Substitution Involving a Definite Integral: Part One
Trigonometric Substitution Involving a Definite Integral: Part Two
Sections 16.9.1-16.9.2 with videos
Deriving the Trapezoidal Rule
An Example of the Trapezoidal Rule
47 minutes of video time this week
Assignments
Forum Week 11
Critical Points
Watch assigned videos, read transcript, study notes and worked problems in Thinkwell.
Complete ALL exercises in Thinkwell.
Review Summary Week 11 Forum

Week 12: Improper Integrals Applications of Integral Calculus

Learning Objective(s)
Course Objectives 1, 8, 9
17.1 Improper Integrals

Identify improper integrals of the first type
Identify improper integrals of the second type
Solve improper integrals using limits
18.1 The Average Value of a Function

Find the average value of a function
18.2 Finding Volumes Using Cross-Sections

Find volumes using integration
Find volumes using integration
Reading and Videos
Sections 17.1.1-17.1.3 with videos
The First Type of Improper Integral
The Second Type of Improper Integral
Infinite Limits of Integration, Convergence, and Divergence
Section 18.1.1 with video

Finding the Average Value of a Function

Sections 18.2.1-18.2.2 with videos

Finding Volumes Using Cross-Sectional Slices

An Example of Finding Cross-Sectional Volumes

60 minutes of video time this week
Assignments
Read only Week 12 Update
Watch assigned videos, read transcript, study notes and worked problems in Thinkwell.
Complete ALL exercises in Thinkwell.
Review Summary Week 12 Forum
Submit Assignment 4 before Sunday 11:55 pm EST
Complete Test 4 on Chapter 15 Techniques of Integration
both in Sakai and in Thinkwell before Sunday 11:55 pm EST
Week 13: Applications of Integral Calculus

Learning Objective(s)
Course Objectives 1, 9
18.3 Disks and Washers

Find volumes of solids of revolution using the disk method along the x-axis
Find volumes of solids of revolution using the disk method along the y-axis
Find volumes of solids of revolution using the disk method
Find volumes of solids of revolution using the washer method along the x-axis
Find volumes of solids of revolution using the washer method along the y-axis
18.4 Shells

Find volumes of solids of revolution using the shell method
Find volumes of solids of revolution using the shell method
Reading and Videos
Sections 18.3.1-18.3.5 with video
Solids of Revolution
The Disk Method along the y-Axis
A Transcendental Example of the Disk Method

The Washer Method across the y-Axis
Sections 18.4.1-18.4.2 with videos
Introducing the Shell Method
Why Shells Can Be Better Than Washers
85 minutes of video time this week
Assignments
Forum Week 13
Derivatives of Absolute Value
Watch assigned videos, read transcript, study notes and worked problems in Thinkwell.
Complete ALL exercises in Thinkwell.
Review Summary Week 13 Forum
Week 14: Applications of Integral Calculus

Learning Objective(s)
Course Objectives 1,9
18.4 Shells

Find volumes of solids of revolution using the shell method along the y-axis
18.5 Arc Lengths and Functions

Explain how to find the length of an arc
Find the length of an arc defined by a given function
18.6 Work

Explain work as a definite integral of a force function
Solve for work as a definite integral of a force function
Use Hook's law and the definite integral to solve for work done on a spring
*18.7 Moments and Centers of Mass
Define the center of mass of a system of points; Calculate the center of mass of a system of points
Find the center of mass of a thin plate
Reading and Videos
Section 18.4.3 with video 18.4.3
The Shell Method: Integrating with Respect to y
Sections 18.5.1-18.5.2 with videos

An Introduction to Arc Length

Finding Arc Lengths of Curves Given by Functions

Sections 18.6.1-18.6.3 with videos

An Introduction to Work

Calculating Work

Hooke's Law
*Optional sections and videos
18.7.1-18.7.2

Center of Mass
The Center of Mass of a Thin Plate
51 minutes of video time this week
Assignments
Read only Week 14 Update
Watch assigned videos, read transcript, study notes and worked problems in Thinkwell.
Complete ALL exercises in Thinkwell.

* Optional sections 18.7:

Moments and Center of Mass
Review Summary Week 14 Forum

Week 15: Complete last test, Course review

Learning Objective(s)
Complete test for Ch 17 \& 18
Review ALL course material and videos of troublesome topics to prepare for the final examination Reading and Videos

976 minutes of video total time for entire course
Assignments
Forum Week 15
Using Complex Numbers in the real world.
Review Summary Week 15 Forum
Submit Assignment 5 before Sunday 11:55 pm EST
Complete Test 5 on Chapter 17 Improper Integrals \& Chapter 18 Applications of Integral Calculus both in Sakai and in Thinkwell before Sunday 11:55 pm EST

Learning Objective(s)

Demonstrate your knowledge of calculus
Reading and Videos
Assignments
Review Summary Week 16 Forum
Complete And submit Final Exam in both Thinkwell and Sakai

Evaluation

Staying on task and adhering to the published schedule are typically among the most challenging aspects of completing an academic course successfully. This is especially true for on-line and part-time non-resident programs. To avoid the pitfall of falling behind, students in this course should complete the assigned reading, and exercises in the Thinkwell environment. Students should also complete the Suggested Practice Problems as set forth in the schedule provided in the Course Outline of this syllabus.

Student grades for the course will be based on active weekly forum entries, watching videos and completing Thinkwell exercises, completing weekly assignments, submitting five tests and one final examination. You must complete all items to successfully master all skills in this course.

The Week 1 Introduction Forum: During the first week of class each student must make a post to the Week 1 Introduction Forum. You are to use this Forum to introduce yourself and state your goals and objectives as they relate to our course. You are required to make a post to the Week 1 Introduction Forum in order to complete your enrollment in the course. Your post must be at least $\mathbf{2 5 0}$ words, and you must complete it by the end of the first week. This is a university requirement. To make a post to the Week 1 Introduction Forum, click on the Forum topic link, then click Post New Thread. In the title block of the dialog box that appears kindly insert your first and last name; compose your post in the message box; and then click Post Message.

Besides completing your enrollment in the course, the Week 1 Introduction Forum is designed to 1) build peer-to-peer relationships by introducing oneself and one's background to the class; 2) to articulate individual student learning goals and/or expectations for the class. Therefore, in your introduction you may wish to touch upon the following:

1. Who you are and how you would like to be addressed.
2. Your academic major or program of study.
3. Your current status in your program of study.
4. Your academic goals including why you are taking this course and what you hope to achieve by completing it.
5. Other information about yourself that you would like to share and might help others know you better.

Chapter Tests: The chapter tests will cover two short or one long chapter as they are completed. These tests will be taken on-line in the classroom. They will be open book and open note tests. However, you may not receive help from any other person. These tests will be assigned early in the week and will be due by the end of the week. The exact dates are noted later in this student guide. These tests will represent 60 percent of the student's course grade.

There are practice exercises, some in Thinkwell and others in Sakai for each of the text chapters covered. These practice problems are focused on the reading and study material for each week. After completing your assigned reading and viewing the appropriate weekly videos, you should complete those problems in order to ensure you have mastered the material covered. They are not graded, but will be discussed through the weekly forums per student questions. If you do not feel that you have mastered the topics sufficiently, please
feel free to explore additional problems which you can also introduce into our weekly forums. You can also post your solutions on a weekly forum for input from other students and me.

Weekly Forums: The weekly discussion forum is for students to answer my session topic and for students to post their questions on course content for that week. Successful students find that this is an excellent resource.

The Cumulative Final Exam will be taken during the last week of the semester (25 points). It will be a threehour exam. It will be open book and open notes and it will be on-line. It is highly recommended that you use a calculator. Students are required to submit the precise 3 hour time block that they will take the final exam during the last week of class. This time and date should be submitted during the 7 th week of the semester. Unless the professor approves alternate arrangements, students should plan to take the final examination during the 16th week of the course.

Students' final grades will be posted as soon as the instructor receives and evaluates the final exam. Official grades will continue to be issued by the University on the grade report form. Professors have 7 days from the end of the semester to submit their grades to the University.

Please see the Student Handbook to reference the University's grading scale.
The points earned on the graded course assignments will determine the course grade. The final grade in the course will be based on total points. Grades will be assigned based on the following term composite scores:

Grading:

Name	Grade \%
Forums	5.00 \%
Introductory Forum	0.46 \%
Forum Week 1	0.46 \%
Forum Week 2	0.46 \%
Forum Week 3	0.23 \%
Forum Week 4	0.46 \%
Forum Week 5	0.46 \%
Forum Week 6	0.46 \%
Forum Week 7	0.46 \%
Forum Week 8	0.23 \%
Forum Week 9	0.46 \%
Forum Week 10	0.46 \%
Forum Week 11	0.46 \%
Forum Week 13	0.46 \%
Forum Week 15	0.23 \%
Forum Week 16	0.23 \%
Assignments of Thinkwell Exercises	10.00 \%
APUS Honor Code and Pledge	1.00 \%
Assignment 1	2.00 \%
Assignment 2	2.00 \%
Assignment 3	2.00 \%
Assignment 4	2.00 \%
Assignment 5	2.00 \%
Test Critiques	60.00 \%
Test 1 Critique	12.00 \%
Test 2 Critique	12.00 \%
Test 3 Critique	12.00 \%
Test 4 Critique	12.00 \%

Test 5 Critique	12.00%
Final Exam	25.00%
Final Examination	25.00%

Materials

Book Title: Thinkwell Calculus Online Materials - Thinkwell will send a user name and password to your primary email address. Instructions provided inside the classroom.

Author:

Publication Info: Thinkwell
ISBN: THINKWELL-CALC

Additional Resources

You will need, and are encouraged to use, a graphing calculator to successfully complete this course. At your discretion, you may use a scientific or graphing calculator, or the calculator on your computer that is capable of performing these functions. Microsoft2 has a free on-line calculator, as listed below. You may use these tools for all graded assignments and examinations during the course.

Tutorials3: These tutorials include 4-6 minute vignettes on many course topics for both Calculus I and Calculus II, written by the course lead and are focused on the weekly course objectives. In addition, students have also found Khanacademy4 and PatrickJMT5 tutorials helpful. Students may access these videos by clicking on Cntrl+Click on the link.

Web Sites
The following public domain web sites are useful. Please abide by the APUS University's academic honesty policy when using Internet sources, as well. Note web site addresses are subject to change.

Site Name	Website URL/Address
Thinkwell 1	https://www.thinkwell.com/account/signin
On-line graphing calculator 2	Microsoft Mathematics 4.0
APUS WV tutorials 3	http://www.apus.edu/media/mathWV/calculus.htm
Khanacademy 4	https://www.khanacademy.org/
PatrickJMT 5	http://patrickjmt.com/topic/calculus/

Textbook

There is no required traditional or on-line textbook for this course. Any traditional introductory calculus textbook from the library or on-line should cover the topics for this class.

If you would feel more comfortable with an on-line textbook, one is available in the library at APUS. To access, simply follow the instructions below:

1 While in the classroom, from the left menu tab click APUS Library.
2 Type in ... "calculus", then click Search.
3 From the first entry, "\#1 Sarah Channon 2009", click on Full text on-line
4 Click on PDF full text. Using the page number blank at the top of the page, type in the desired section:.

Introduction begins on page 3
Functions begins on page 6
Limits begins on page 23
Differentiation begins on page 39
Calculus II
Integration on page 85
Calculus III
Infinite series on page 155
Multivariable Calculus on page 172
Extensions on page 262
Alternately you could click this link Calculus by Sarah Channon, and click on the first title.
Thinkwell does have a book available which is a compilation of problems. There are no lessons included in this book. All of the problems, plus additional problems are already available on-line in Thinkwell. You will need to contact Thinkwell directly to make this purchase.

Thinkwell's Calculus Exercises for Chapter's 1-8, Edited by Raymond W. Reinhardt, Copyright 2010 by Thinkwell Corporation.

Course Guidelines

Citation and Reference Style

- Attention Please: Students will follow the APA Format as the sole citation and reference style used in written work submitted as part of coursework to the University. Assignments completed in a narrative essay or composition format must follow the citation style cited in the APA Format.

Tutoring

- Tutor.com offers online homework help and learning resources by connecting students to certified tutors for one-on-one help. AMU and APU students are eligible for 10 free hours* of tutoring provided by APUS. Tutors are available 24/7 unless otherwise noted. Tutor.com also has a SkillCenter Resource Library offering educational resources, worksheets, videos, websites and career help. Accessing these resources does not count against tutoring hours and is also available 24/7. Please visit the APUS Library and search for 'Tutor' to create an account.

Late Assignments

- Students are expected to submit classroom assignments by the posted due date and to complete the course according to the published class schedule. The due date for each assignment is listed under each Assignment.
- Generally speaking, late work may result in a deduction up to 15% of the grade for each day late, not to exceed 5 days.
- As a working adult I know your time is limited and often out of your control. Faculty may be more flexible if they know ahead of time of any potential late assignments.

Turn It In

- Faculty may require assignments be submitted to Turnitin.com. Turnitin.com will analyze a paper and report instances of potential plagiarism for the student to edit before submitting it for a grade. In some
cases professors may require students to use Turnitin.com. This is automatically processed through the Assignments area of the course.

Academic Dishonesty

- Academic Dishonesty incorporates more than plagiarism, which is using the work of others without citation. Academic dishonesty includes any use of content purchased or retrieved from web services such as CourseHero.com. Additionally, allowing your work to be placed on such web services is academic dishonesty, as it is enabling the dishonesty of others. The copy and pasting of content from any web page, without citation as a direct quote, is academic dishonesty. When in doubt, do not copy/paste, and always cite.

Submission Guidelines

- Some assignments may have very specific requirements for formatting (such as font, margins, etc) and submission file type (such as .docx, .pdf, etc) See the assignment instructions for details. In general, standard file types such as those associated with Microsoft Office are preferred, unless otherwise specified.

Disclaimer Statement

- Course content may vary from the outline to meet the needs of this particular group.

Communicating on the Forum

- Forums are the heart of the interaction in this course. The more engaged and lively the exchanges, the more interesting and fun the course will be. Only substantive comments will receive credit. Although there is a final posting time after which the instructor will grade comments, it is not sufficient to wait until the last day to contribute your comments/questions on the forum. The purpose of the forums is to actively participate in an on-going discussion about the assigned content.
- "Substantive" means comments that contribute something new and hopefully important to the discussion. Thus a message that simply says "I agree" is not substantive. A substantive comment contributes a new idea or perspective, a good follow-up question to a point made, offers a response to a question, provides an example or illustration of a key point, points out an inconsistency in an argument, etc.
- As a class, if we run into conflicting view points, we must respect each individual's own opinion. Hateful and hurtful comments towards other individuals, students, groups, peoples, and/or societies will not be tolerated.

University Policies

Student Handbook

- Drop/Withdrawal policy
- Extension Requests
- Academic Probation
- Appeals
- Disability Accommodations

The mission of American Public University System is to provide high quality higher education with emphasis on educating the nation's military and public service communities by offering respected, relevant, accessible, affordable, and student-focused online programs that prepare students for service and leadership in a diverse, global society.

STUDENT WARNING: This course syllabus is from a previous semester archive and serves only as a preparatory reference. Please use this syllabus as a reference only until the professor opens the classroom and you have access to the updated course syllabus. Please do NOT purchase any books or start any work based on this syllabus; this syllabus may NOT be the one that your individual instructor uses for a course that has not yet started. If you need to verify course textbooks, please refer to the online course description through your student portal. This syllabus is proprietary material of APUS.

